软件漏洞挖掘方法探索 Finding Vulnerabilities with Fuzzing

Chao Zhang Tsinghua University

http://netsec.ccert.edu.cn/chaoz/

About Me

2004-2008-2013

 PEKING UNIVERSITY

Hack for fun

Automated vuln. discovery:
Automated exploit mitigation:
Automated exploit generation:
Automated attack & defense:
Manual hacking:

software and system security

Tencent CSS TSec 2nd Place, 300+ CVE Microsoft BlueHat Prize (Special Recognition Award) Tencent CSS TSec Breakthrough Prize (1st place) DARPA CGC (1st in defense 2015, 2nd in offense 2016) DEFCON CTF (2nd in 2016, 5th in 2015 and 2017)

Goal: AlphaGo for software security.

2020/8/22

To better defend yourself, know your enemy first. --- Sun Tzu

Research Interests

□<u>段海新</u>教授,<u>张超</u>副教授,<u>李琦</u>副教授,<u>诸葛建伟</u>副研究员等

□学术研究

- □研究方向:网络、<u>系统、应用安全</u>(AI、物联网、区块链)
- □ 学术成果:国际四大安全会议论文数量名列前茅
- □ 实践应用:促进Google、微软、IETF等多次改进产品、协议标准安全性

□组织发起

□ InForSec网络安全研究国际学术论坛 □ XCTF国际网络安全技术对抗联赛

□"蓝莲花""紫荆花"战队

没有什么能够阻挡 你对自由的向往 … … 如此的清澈高远 盛开着永不凋零

蓝莲花

紫荆花

欢迎热爱安全研究的同学们加入蓝莲花! (不限学校)

Vulnerability: Ghost in Cyberspace

□Valuable assets, root causes of most security incidents

SPECTR

MELTDOW

	Wana Decrypt0v 2.0								
	Ooops, your files have been encrypted!	English v							
	What Happened to My Computer? Your important files are encrypted. Many of your documents, photos, videos, databases and other files are na accessible because they have been encrypted. Maybe you are heavy bookis recover your files, but do not watte your time. Nobody can recover your our decryption service.	a longer ng for a way to r files without							
Payment will be raised on	Can I Recover My Files?								
576201700-1755 Time Left 02: 23: 57: 37	Last 1 succover my rules: Sure. We guarantine that you can recover all your files safely and easily. But you have not so enough time. You can decrypt some of your files for free. Try now by clicking «Decrypt». But if you want to decrypt all your files your need to pay. You only have 3 days to submit the payment. After that the price will be doubled.								
Your files will be lost on	We will have free events for users who are so poor that they couldn't pe How Do I Pay?	y in 6 months.							
Time Left 06:23:57:37	Payment is accepted in Bitcoin only. For more information, citck 'About bitcoins. Please check the current price of Bitcoin and buy some bitcoins. For more information, click 'How to buy bitcoins'. And send the current chack Payments. Best time to check 9-60mm - 11.00am After your payment, click 'Check Payments'. Best time to check 9-60mm - 11.00am								
	Send \$300 worth of bitcoin to this address: Accention leader 12t3YCP geve23HyMgw51bg7AABity65Mw	Copy							
Contact Us	Check Payment Decrys	и							

Hacking Practice: DEFCON CTF

Blue-Lotus (coach)

- 2013 first time in DEFCON;
- 2014 5th place;
- 2015 5th place ;
- 2016 2nd place; (human vs. machine)
- 2017 5th place ;
- 2018 6th place
- 2019 3rd place

Global

- 2013: ppp, men in black hats, raon_ASRT
- 2014: ppp, hitcon, dragonsector, blue-lotus
- 2015: defkor, ppp, 0daysober, hitcon, blue-lotus
- 2016: ppp, **b100**p, defkor, hitcon
- 2017: ppp, hitcon, a*0*e, defkor, tea-deliverers
- 2018: defkoroot, ppp, hitcon, a*0*e, sauercloud, tea-deliverers
- 2019: ppp, hitcon, tea-deliverers

DARPA Cyber Grand Challenge (Automated Offense and Defense) (CodeJitsu Team Captain, CQE Defense #1, CFE Offense #2)

Vulnerability Discovery

- **Code Review** (10%?)
- Static Analysis
- Dynamic Analysis
- Taint Analysis
- Symbolic Execution
- Model Checking
- **Fuzzing** (80%?)

□Goal:

Finding PoC samples that prove vulnerabilities

□ Find needle in the haystack

2020/8/22

□ Iterative testing, keep GOOD seeds, report bugs

2020/8/22

http://netsec.ccert.edu.cn/chaoz/

A pioneer tool: AFL

- Evolving: filter out only GOOD samples contributing to code coverage
- Scalable: mutation-based, few knowledge required
- Fast: fork-server, persistent, parallel
- Sensitive: support different sanitizers to catch security violations

Our works

Improvement 1: Coverage & Seed Selection

CollAFL: Path Sensitive Fuzzing

Shuitao Gan¹, Chao Zhang², Xiaojun Qin¹, Xuwen Tu¹, Kang Li³, Zhongyu Pei², Zuoning Chen⁴

Observations (1)

Collision in Coverage Tracking

• "The size of the map is chosen so that collisions are sporadic with almost all of the intended targets, which usually sport between 2k and 10k" -- from AFL's description

□ AFL uses a 64KB bitmap to track edge coverage

Two edges may have a same hash

- Discarding GOOD seeds
- Discarding unique crashes
- Providing inaccurate coverage info for fuzzing policies (e.g., seed selection)

[Applications	Size	#ins.	#BB	#edges	collision
	LAVA(base64)	193KB	5570	822	1308	0.8%
1	LAVA(uniq)	208KB	5285	890	1407	0.92%
	LAVA(md5sum)	234KB	7397	1013	1560	1.02%
	LAVA(who)	1.52MB	84648	1831	3332	1.8%
	catdoc	202KB	6448	841	1322	1.29%
	libtasn1	540KB	12511	2163	3820	2.72%
1	cflow	688KB	24655	4286	7001	5.2%
	libncurses	338KB	21486	4646	7883	5.57%
	libtiff+tiffset	1.77MB	61119	8974	14826	10.4%
1	libtiff+tiff2ps	1.97MB	65932	9632	15927	10.84%
	libtiff+tiff2pdf	2.1MB	71530	10507	17603	12.31%
	libming+listswf	4.04MB	87148	11456	19154	13.61%
	libdwarf	3MB	73921	11698	20260	13.7%
	tepdump	4.62MB	127082	18781	32656	21.2%
	nm	8.72MB	218326	31611	53652	36.06%
	bison	3.28Mb	219268	42856	55658	32.8%
	nasm	4.4MB	226665	41691	57411	33.38%
	libpspp	5MB	259501	41323	71335	38.9%
	objdump	11.88MB	305620	43935	74313	40.17%
	clamav	11.35MB	347156	46140	81069	42.48%
	exiv2+libexiv2	4.75MB	283284	59650	91287	45.87%
	libsass+sassc	32.8MB	593570	68538	106738	50.7%
	vim	14.7MB	478402	83877	153689	61.4%
	libav	76.7MB	1776730	158009	255212	74.85%
	libtorrent	97.5MB	1228513	164325	260485	75.29%

Few seed selection policies aim at increasing the code coverage directly
 E.g., AFLfast, VUzzer, AFLgo, QTEP, SlowFuzz

Coverage-first seed selection policies could reach higher code coverage faster.

Our Solution: CollAFL

Mitigate collision in coverage trackingApply coverage-first seed selection policy

http://netsec.ccert.edu.cn/chaoz/

RQ1: Eliminate hash collisions

□AFL uses a 64KB bitmap to track edge coverage

Naïve solution: increase bitmap size

Fig. 4: Edge collision rate drops if enlarge bitmap size. Fig. 5: Execution speed drops too if enlarge bitmap size.

SINGHO

AINERS!

Our solution: intuition

Replace the hash algorithm, without much performance loss

Each block could have different combination of parameters x,y,z
 Search parameters x,y,z for all blocks one by one, to avoid collisions.
 harder and harder to find parameters for remaining blocks.

Our solution: in-a-nutshell

Search parameters x,y,z for multi-precedent blocks
 Construct hash table for unsolvable multi-precedent blocks
 Assign un-used hashes to single-precedent blocks

Performance of Collision Mitigation

The bitmap will be enlarged when the edge count is larger than bitmap size, otherwise collision is inevitable.

Applications	bitmap	AFL			CollAFL			
Applications	size	#ins.	delta	Fmul	Fsingle	Fhash	coll. ratio	
libncurses	64KB	37168	-2.93%	1779	2867	0	0	
clamay	128KB	368912	-4.45%	14845	31269	26	0	
ciamav	64KB	-	-	17573	28567	0	19.16%	
libay	256KB	1264072	-0.6%	75068	82915	26	0	
ndav	64KB	-	-	10392	147617	0	74.32%	
libtorrent	256KB	1314568	-2.91%	63012	101309	4	0	
	64KB	-	-	10756	153569	0	74.84%	
libpspp	128KB	330528	-3.15%	15444	25872	7	0	
	64KB	-	-	16946	24377	0	8.13%	
libsass	128KB	548296	-3%	26897	41640	1	0	
	64KB	-	-	15785	52753	0	38.6%	
libdwarf	64KB	93568	-5.03%	3494	8202	2	0	
bison	64KB	342848	+1.36%	23760	19096	0	0	
cflow	64KB	34288	-1.44%	1896	2390	0	0	

Most BBs have only one precedent, saving hash computation and improving runtime performance.

RQ2: Coverage-first seed selection

Prioritize seeds with more untouched branches

Mutations on these seeds are more likely to exercise those untouched branches, contributing to coverage.

Evaluation: Code Coverage

□20% more paths over AFL

With extra untouched-branch seed selection policy

With collision mitigation only

			K				
Software	AFL	CollAFL	-br	-desc	-mem	AFL-fast	CollAFL-fast
Cflow	1080	+3.43%	+59.17%	+41.11%	+21.3%	1389	+7.27%
bison	1388	+9.51%	+50.94%	+75.36%	+63.04%	1969	+6.81%
tiff2pdf	5332	+5.46%	+11.7%	+14.12%	+10%	4979	+2.37%
listswf	4292	+1.34%	+6.85%	+3.36%	+0.07%	4104	+0.79%
libnurses	1529	+19.56%	+29.5%	+19.62%	+26.95%	1848	+0.6%
tiffset	1784	+0.73%	+5.04%	+10.82%	-4.37%	1616	-1.86%
exiv2	1209	+36.56%	+36.06%	+6.45%	+21.17%	201	+17.62%
libtasn1	465	+15.27%	+59.14%	+33.76%	+53.33%	511	+4.31%
libsass	8790	-1.37%	-0.61%	+3.69%	-1.66%	8771	-1.25%
nm	2389	+11.76%	-17.79%	-14.65%	-16.83%	1493	+47.15%
libpspp	2258	+6.64%	-11.43%	-4.07%	-0.27%	1772	+9.14%
Average	2774	+9.9%	+20.78%	+17.23%	+15.7%	2604	+8.45%

SINGA

Evaluation: Crashes

□ 320% more unique crashes than AFL (CollAFL-br)

Evaluation: Vulnerabilities

□134 new bugs, 23 collided bugs, 95 CVE, 9 ACE

Annelinen		uniq	vulnerabilities		ALT	CollAFL				unknown vulnerabilities	
Applications	version	crashes	crashes unknown known 70	AFL	default	-br	-desc	-mem	CVE	ACE	
libtiff	4.0.8	1569	10	3	1	7	10	8	6	7	2
libtasn1	4.12	1	1	0	0	0	0	1	0	1	0
libming	0.4.8	1303	2	4	2	2	3	4	4	2	0
libncurses	6.0	526	15	0	3	5	13	10	7	11	2
libexiv2	0.26	222	14	0	5	9	14	14	9	13	0
libsass	3.5.0	155	10	2	4	7	12	12	9	9	0
libpspp	0.10.5	412	10	2	4	5	10	10	12	6	0
bison	3.0.4	212	3	2	1	2	5	5	2	0	0
cflow	1.5	298	7	2	4	5	7	8	6	0	0
binutils	2.28	397	4	4	4	6	8	8	6	2	1
libav	12.1	239	2	0	1	1	2	2	1	2	0
tcpdump	4.9.0	10	3	0	1	2	2	3	2	2	0
clamav	0.99.2	12	1	0	0	1	1	1	1	1	0
libdwarf	20170416	14	1	0	1	1	1	1	0	1	0
libtorrent	1.1.3	177	1	0	0	1	1	1	1	1	0
nasm	2.14	1619	17	0	5	13	17	17	12	14	2
vim	8.0.679	28	3	0	1	2	3	3	2	1	1
catdoc	0.9.5	16	3	0	2	3	3	3	2	1	1
libgxps	0.2.5	32	1	0	1	1	1	1	1	1	0
Libmpg123	1.25.0	11	1	0	0	0	1	1	1	1	0
Libraw	0.18.2	14	1	0	0	0	1	1	0	1	0
Liblouis	3.2.0	38	10	0	4	5	8	7	6	7	0
Graphicmagick	1.3.26	88	4	0	2	3	-4	4	3	2	0
jasper	2.0.12	122	10	4	5	7	14	14	6	9	0
Total		7501	134	23	51	88	141	139	99	95	9
Fraction of total vul.	-	-	nttp://n	etsec ccert eo	u ch/chaoz	56%	90%	89%	63%	61%	4%

Improvement 2: Seed Mutation & Tracking

GREYONE: Data Flow Sensitive Fuzzing

Shuitao Gan¹, Chao Zhang^{2,3}⊠, Peng Chen⁴, Bodong Zhao², Xiaojun Qin¹, Dong Wu¹, Zuoning Chen⁵

```
// magic number: direct copy of input[0:8] vs. constant
  if(u64(input) == u64("MAGICHDR")){
      bug1();
  // checksum: direct copy input[8:16] vs. computed val
  if(u64(input+8) == sum(input+16, len - 16))
      bug2();
8
  // length: direct copy of input[16:18] vs. constant
  if ( u16(input+16) > len )) { bug3(); }
10
  // indirect copy of input[18:20]
  if (foo(u16(input+18)) = ...) \{ bug4(); \}
12
  // implicit dependency: var1 depends on input[20:24]
13
  if(u32(input+20) == ...)
14
      var1 = ...;
15
16
  // var1 may change if input[20:24] changes
17
  // FTI infers: var1 depends on input[20:24]
18
19 if (var1 == ...) { bug5(); }
```

Where to mutate?
input[0:8]

How to mutate?
MAGICHDR

Seed prioritization

1 byte match, vs.

7 bytes match

Data flow information is useful for fuzzing

What types of data-flow features?

Taint attributes

Dependency between inputs and variables

Branch value conformance

Distance between branch condition operands

$$C_{br}(br, S) = NumEqualBits(var1, var2)$$

The higher conformance, the closer distance

Our Solution: GreyOne

RQ1: How to efficiently get data-flow features?

- * taint attributes
- * branch value conformance

RQ2: How to utilize data-flow features to guide mutation?

RQ3: How to utilize data-flow features to tune fuzzing direction?

RQ1-1: Taint Attributes

- Traditional dynamic taint analysis
 Libdft/DFSan...
 - Propagate taint inst. by inst.
 - Taint rules manually/automatically
 - Under-taint and over-taint issues

```
1 // under-taint: missing taint model

2 var1 = externalCall(u32(input));

3 // br1 depends on [0,1,2,3]

4 if (var1 > ...){

5 ...

6 }

7 // over-taint: bit masking

8 var2 = var1 & 0xFFFF

9 // br2 depends on [0,1]

10 if (var2 == ...){

11 ...

12 }

13 // under-taint: implicit control flow

14 while (var2--){

15 var3++;

16 }

17 // over-taint: missing taint model

18 var1 = externalCall(u32(input));

19 var3++;

10 }

10 // under-taint: implicit control flow

11 var3++;

12 }

13 // under-taint: implicit control flow

14 var3++;

16 }

15 var3++;

16 }

16 var1 = 0;

17 var3++;

18 var3++;

19 var3++;

10 var3+
```

- Fuzzing-driven Taint Inference (FTI) ■ Interference rule $v(var,S) \neq v(var,S[i])$
 - □ Taint inference
 - Byte-level mutationBranch variable monitoring
 - Deterministic fuzzing stage

- Speed: faster
- Manual efforts: none, arch-independent
- No over-taint
- less under-taint

Performance of FTI

Proportion of tainted untouched branches reported

- ✓ FTI outperforms the classic taint analysis solution DFSan
- ✓ FTI finds 1.3X more untouched branches that are tainted

Average speed of analyzing one seed by FTI

✓ FTI brings 25% overhead on average

RQ1-2: Constraint Conformance

RQ2: taint-guided mutation (how)

How to mutate direct copies of input?

- ✓ Direct copies
 - ♦ Magic number, Checksum...
- ✓ Execute twice
 - First round
 - ◆ FTI taint analysis: input offsets, expected value
 - Second round
 - Mutate and test

How to mutate indirect copies of input?

Random bit flipping and arithmetic operations on each dependent byte
 Multiple dependent bytes could be mutated together

Mitigate the under-taint issue

 \checkmark Randomly mutate their adjacent bytes with a small probability

RQ2: taint-guided mutation (where)

Where to mutate?

\checkmark Explore the untouched neighbor branches along this path one by one

◆ In descending order of branch weight

\checkmark For specific untouched neighbor branch

- ◆ Mutating its dependent input bytes one by one
- ◆ In descending order of byte weight

Inputs may affect program variables, which may influence branches

Prioritize bytes to mutate: affecting more untouched branches

 $W_{byte}(S, pos) = \sum_{br \in Path(S)} IsUntouched(br) * DepOn(br, pos)$

Prioritize branches to explore: depending on more high-weight bytes

$$W_{br}(S,br) = \sum_{\substack{pos \in S \\ http://netsec.ccert.edu.cn/chaoz/}} DepOn(br, pos) * W_{byte}(S, pos)$$

2020/8/22

Tune evolution direction with Branch Conformance

http://netsec.ccert.edu.cn/chaoz/

RQ3: Conformance-guided evolution

□Updating seed queues:

- the higher conformance, the better
- **•** together with AFL's policy: **coverage-guided**

- New coverage
- Same coverage, higher path conformance
- Same coverage, same path conformance, different branch conformance

Evaluation: Code Coverage

Applications		Pat	h Coverage	20-20-20-20-20-20-20-20-20-20-20-20-20-2	1000	(
	AFL	CollAFL-br	Angora	GREYONE (INC)	AFL	CollAFL-br	Angora	GREYONE (INC)
tiff2pdf	2638	3278	3344	5681(+69.9%)	6261	6776	6820	8250(+20.9%)
readelf	4519	4782	5212	6834(+32%)	6729	6955	7395	8618(+14.5%)
fig2dev	697	764	105	1622(+112%)	934	1754	489	2460(+40.2%)
ncurses	1985	2241	1024	2926(+30.6%)	2082	2151	1736	2787(+28.2%)
libwpd	4113	3856	1145	5644(+37.2%)	5906	5839	4034	7978(+35.1%)
c++filt	9791	9746	1157	10523(+8%)	6387	6578	3684	7101(+8%)
nasm	7506	7354	3364	9443(+25.8%)	6553	6616	4766	8108(+22.5%)
tiffset	1373	1390	1126	1757(+26%)	3856	3900	3760	4361(+11.8%)
nm	2605	2725	2493	4342(+59%)	5387	5526	5235	8482(+53.5%)
libsndfile	911	848	942	1185(+25.8%)	2486	2392	2525	2975(+17.8%)

Number of unique crashes (average and maximum count in 5 runs) found in real world programs by various fuzzers

The growth trend of number of unique paths (average in 5 runs) detected by AFL, CollAFL-br,

http://netsec.ccert.edu.cn/chaozAngora and GREYONE

SINGHO

INERS/

Unique Crashes Evaluation

Applications	AFL		CollAF	L-br	Ango	ra	GREYONE		
Applications	Average	Max	Average	Max	Average	Max	Average	Max	
tiff2pdf	0	0	0	0	0	0	6	12	
libwpd	0	0	1	3	0	0	21	58	
fig2dev	8	12	11	20	0	0	40	79	
readelf	0	0	0	0	21	27	28	38	
nm	0	0	0	0	0	0	16	72	
c++filt	18	30	7	32	0	0	268	575	
ncurses	7	18	12	23	0	0	28	37	
libsndfile	4	13	8	20	0	0	23	33	
libbson	0	0	0	0	0	0	6	12	
tiffset	22	46	43	49	0	0	83	122	
libsass	0	0	0	0	0	0	8	12	
cflow	9	47	17	35	0	0	32	185	
nasm	5	15	20	42	6	12	157	212	
Total	73	181	119	229	27	39	716 (+501%)	447 (+631%)	

Number of unique crashes (average and maximum count in 5 runs) found in real world programs by various fuzzers

The growth trend of number of unique crashes (average and each of 5 runs) detected by AFL, CollAFL-br, Angora and GREYONE

10 40 Time (hour

C++filt

Time (hour)

Fig2dev

Time (hour)

Evaluation: Vulnerabilities

A DOMESTIC AND A DOMESTIC	March	4.57	Collard by	Hannahara	A.01.5		Carrier	Vul	nerabilities	
Applications	Version	APL	CollAPL- br	Honggtuzz	VUzzer	Angora	GREYONE	Unknown	Known	CVE
readelf	2.31	1	1	0	0	3		2	2	-
nm	2.31	0	0	0	0	0	2	1	1	
c++filt	2.31	1	1	1	0	0	4	2	2	
tiff2pdf	v4.0.9	0	0	0	0	0	2	1	1	0
tiffset	v4.0.9	1	2	0	0	0	2	1	1	1
fig2dev	3.2.7a	1	3	2	0	0	10	8	2	0
libwpd	0.1	0	1	0	0	0	2	2	0	2
ncurses	6.1	1	1	0	0	0	4	2	2	2
nasm	2.14rc15	1	2	2	1	2	12	11	1	8
bison	3.05	0	0	1	0	2	4	2	2	0
cflow	1.5	2	3	1	0	0	8	4	4	0
libsass	3.5-stable	0	0	0	0	0	3	2	1	2
libbson	1.8.0	1	1	1	0	0	2	1	1	1
libsndfile	1.0.28	1	2	2	1	0	2	2	0	1
libconfuse	3.2.2	1	2	0	0	0	3	2	1	1
libwebm	1.0.0.27	1	1	0	0	0	1	1	0	1
libsolv	2.4	0	0	3	2	2	3	3	0	3
libcaca	0.99beta19	2	4	1	0	0	10	8	2	6
liblas	2.4	1	2	0	0	0	6	6	0	4
libslax	20180901	3	5	0	0	0	10	9	1	
libsixl	v1.8.2	2	2	2	2	3	6	6	0	6
libxsmm	release-1.10	1	1	2	0	0	5	4	1	3
Total		21	34	18	6	12	105 (+209%)	80	25	41

19 popular applications

2X more vulnerabilities (41 CVEs)

Number of vulnerabilities (accumulated in **5 runs**) detected by 6 fuzzers, including AFL, CollAFL-br, VUzzer, Honggfuzz,Angora, and GREYONE, after testing each application for **60 hours**

2020/8/22

CVEs

\frown		
libwpd	CVE-2017-14226, CVE-2018-19208	There is a heap-buffer-overflow in libxsmm_sparse_csc_reader at src/generator_spgemm_csc_reader.c:174 src/generator_spgemm_csc_reader.c:122) in libxsmm.
lbtiff	CVE-2018-19210	Description: Libysman, CVE 2019 20541
libbson	CVE-2017-14227,	The asan debug is as follows:
libncurses	CVE-2018-19217, CVE-2018-19211	<pre>\$./libxsmm_gemm_generator sparse b a 10 10 10 1 1 1 1 1 1 0 wsm nopf SP POC0</pre>
libsass	CVE-2018-19218, CVE-2018-19218	==51909- ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60200000eff0 at pc 0x000000444875 b
libsndfile	CVE-2018-19758	<pre>#All of Stite 4 at Oxfore Occurrent circle in the second sec</pre>
nasm	CVE-2018-19213, CVE-2018-19215, CVE-2018-19216, CVE-2018-20535, CVE-2018-20538, CVE-2018-19755	<pre>#2 0x40225a in main src/libxsmm_generator_genm_driver.c:318 #3 0x7f73105a0a3f inlibc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x20a3f) #4 0x402ea8 in _start (/home/company/real_sanitize/poc_check/libxsmm/libxsmm_genm_generator_asan+0x 0x60200000eff1 is located 0 bytes to the right of 1-byte region [0x60200000eff0,0x60200000eff1)</pre>
libwebm	CVE-2018-19212	allocated by thread T0 here: #0 0x7f7310c009aa in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x989aa)
libconfuse	CVE-2018-19760	<pre>#1 0x443f78 in libxmm_sparse_csc_reader src/generator_spgemm_csc_reader.c:122 #2 0x7ffc367e92bf (<unknown module="">) #3 0x439 (<unknown module="">)</unknown></unknown></pre>
libsixel	CVE-2018-19757, CVE-2018-19756, CVE-2018-19762, CVE-2018-19761, CVE-2018-19763, CVE-2018-19763	5./ing2sixel POC2 Libsixel:CVE-2018-19757
libsolv	CVE-2018-20533, CVE-2018-20534, CVE-2018-20532	WRITE of size 67108863 at 0x6020000 a7b1 thread T0 #0 0x7fcd8508b10 inssun_memset (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x8d04b) #1 0x7fcd8508bf10 in memset /usr/include/x86_64-linux-gnu/bits/string3.h:90
libLAS	CVE-2018-20539, CVE-2018-20536, CVE-2018-20537, CVE-2018-20540	<pre>#2 0x7fcd85080510 in image_buffer_resize /nome/company/real_sanitize/libsixel-master/src/fromsixel.cf311 #3 0x7fcd850845d4 in sixel_decode_raw_impl /home/company/real_sanitize/libsixel-master/src/fromsixel.cf851 #4 0x7fcd850848b1 in sixel_decode_raw_ihome/company/real_sanitize/libsixel-master/src/fromsixel.cf81 #5 0x7fcd850c042c in load_sixel /home/company/real_sanitize/libsixel-master/src/loader.cf83 #6 0x7fcd850c042c in load_sixel /home/company/real_sanitize/libsixel-master/src/loader.cf82</pre>
libxsmm	CVE-2018-20541, CVE-2018-20542, CVE-2018-20543	<pre>#7 0x7fcd850c43d9 in sixel_helper_load_image_file /home/company/real_sanitize/libsixel-master/src/loader.c:1352 #8 0x7fcd850cf283 in sixel_encoder_encode /home/company/real_sanitize/libsixel-master/src/encoder.c:1737 #9 0x4017f8 in main /home/company/real_sanitize/libsixel-master/converters/img2sixel.c:457 #10 0x7fcd84a88a3f inlibc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x20a3f)</pre>
liicaca	CVE-2018-20545, CVE-2018-20546, CVE- 2018-20547, CVE-2018-20548, CVE-2018- 20544, CVE-2018-20544	<pre>#11 0x401918 in _start (/home/company/real_sanitize/poc_check/libsixel/img2sixel+0x401918) 0x60200000a7b1 is located 0 bytes to the right of 1-byte region (0x60200000a7b0,0x60200000a7b1) allocated by thread T0 here: #0 0x7fcd853b59aa in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x989aa) #1 0x7fcd8508be1f in image_buffer_resize /bome/company/real_sanitize/libsixel-master/src/fromsixel.c:292</pre>
2020/8/22	http://ne	etsec.ccert.eau.cn/chaoz/ 50

Improvement 3: Seed Mutation Scheduling

1.

.

MOPT: Optimized Mutation Scheduling for Fuzzers

Chenyang Lyu[†], Shouling Ji^{†,+, (⊠)}, Chao Zhang^{¶, (⊠)}, Yuwei Li[†], Wei-Han Lee[§], Yu Song[†], and Raheem Beyah[‡]

Mutation operators of AFL

□ Mutation operators characterize where and how to mutate the seed.

Туре	Meaning	Operators	
bitflip	Invast one or coveral concentrities hits in a test	bitflip 1/1.	
	case where the stenower is 1 bit	bitflip 2/1.	
	case, where the stepover is 1 on.	bitflip 4/1	The mutation operator
a 33.50	Invast one or caused concentrize butes in a test	bitflip 8/8.	<i>bitflip 2/1</i> represents
byteflip	mivert one of several consecutive bytes in a test	bitflip 16/8.	flinning 2 consecutive bit
	case, where the stepover is 8 bits. bitflip 32/8	bitflip 32/8	where the stonewar is 1 h
arithmatic	Barform addition and subtrastion operations on	arith 8/8.	where the stepover is 1 bi
incldee	one byte or several consecutive bytes	arith 16/8,	
mouee	one byte of several consecutive bytes.	arith 32/8	

Some of the mutation operators in AFL.

Mutation scheduling of AFL

□Three mutation stages:

Deterministic, havoc, and splicing

Mutation scheduling scheme of AFL

□Three mutation stages:

Deterministic, havoc, and splicing

Mutation efficiency study on AFL

Different mutation operators' efficiencies are different.

For these programs, the mutation operators *bitflip 1/1*, *bitflip 2/1* and *arith 8/8* could yield more interesting test cases than other mutation operators.

Percentages of interesting test cases produced by different operators in the deterministic stage of AFL

How does AFL select these mutation operators?

The times that mutation operators are selected when AFL fuzzes the target program avconv.

http://netsec.ccert.edu.cn/chaoz/

Our Solution: MOPT

Schedule seed mutation operators in a smarter way

http://netsec.ccert.edu.cn/chaoz/

Intuition

Idea: select the "best" mutation operator based on each operator's historic performance

Solution: Particle Swarm Optimization

Particle Swarm Optimization

□ For each iteration, the movement of a particle p is updated as follows:

 $\Box V_{now}(p)$ is the velocity of a particle p.

 $\Box X_{now}(\mathbf{p})$ is the position of a particle p.

- $\Box L_{best}(p)$ is the local best position of a particle p.
- $\Box G_{best}$ is the global best position.
- $\Box w$ is the inertia weight.
- $\Box r \in (0,1)$ is a random displacement weight

$$V_{now}(p) \leftarrow w \times \qquad V_{now}(p) \\ + r \times (L_{best}(p) - x_{now}(p)) \\ + r \times (G_{best} - x_{now}(p)) \\ X_{now}(p) \leftarrow \qquad X_{now}(p) + V_{now}(p)$$

• For each iteration, the movement of a particle P_j (mutation operator) in a swarm S_i (a set of mutation operators), its position $X_{now}[S_i] [P_j]$ (the probability that it will be selected) is updated by these formula:

$$V_{now}[S_i][P_j] \leftarrow w \times V_{now}[S_i][P_j] \\ +r \times (L_{best}[S_i][P_j] - x_{now}[S_i][P_j]) \\ +r \times (G_{best}[P_j] - x_{now}[S_i][P_j])$$

$$X_{now}[S_i] [P_j] \leftarrow X_{now}[S_i] [P_j] + V_{now}[S_i] [P_j]$$

- *w* is the inertia weight.
- $r \in (0,1)$ is a random displacement weigh

PSO Initialization Module

Pilot Fuzzing Module

Core Fuzzing Module

PSO Updating Module

Source: https://github.com/vul337/MOpt-AFL

SINGH

PSO Initialization Module

initializes parameters for the customized PSO algorithm.

SINGHO

NERS

Pilot Fuzzing Module employs the distributions from multiple swarms to perform fuzzing and records the measurements for updating.

SINGH,

Core Fuzzing Module employs the best swarm evaluated by *Pilot Fuzzing Module* to perform fuzzing and records the measurements.

SINGH

PSO Updating Module updates the distribution of each swarm with the measurements from Pilot Fuzzing and Core Fuzzing Modules.

SINGH

Evaluation: unique crashes and paths

Proversion	A	FL.	7 433723.4	MOPT-A	FL-tmp	1	A SALAS	MOPT-A	FL-ever	
erograno –	Unique crashes	Unique paths	Unique crashes	Increase	Unique paths	Increase	Unique crashes	Increase	Unique paths	Increase
mp42aac	135	815	209	+54.8%	1,660	+103.7%	199	+47.4%	1,730	+112.3%
exiv2	34	2,195	54	+58.8%	2,980	+35.8%	66	+94.1%	4,642	+111.5%
mp3gain	178	1,430	262	+47.2%	2.211	+54.6%	262	+47.2%	2,206	+54.3%
tiff2bw	4	4,738	85	+2.025.0%	7,354	+55.2%	43	+975.0%	7,295	+54,0%
pdfimages	23	12,915	357	+1,452,2%	22,661	+75.5%	471	+1,947.8%	26,669	+106.5%
sam2p	36	531	105	+191.7%	1,967	+270.4%	329	+813.9%	3,418	+543.7%
avconv	0	2,478	4	+4	17,359	+600.5%	1	+1	16,812	+578.5%
w3m	0	3,243	\$05	+506	5,313	+63.8%	182	+182	5,326	+64.2%
objdump	0	11,565	470	+470	19,309	+67.0%	287	+287	22,648	+95.8%
jhead	19	478	55	+189.5%	489	+2.3%	69	+263,2%	483	+1.0%
mpg321	10	123	236	+2,260.0%	1.054	+756.9%	229	+2,190.0%	1,162	+844.7%
infotocap	92	3,710	340	+269.6%	6.157	+66.0%	692	+652.2%	7,045	+90.0%
pedefepdfinfo	79	3,397	122	+54.4%	4,704	+38.5%	114	+44.3%	4,694	+38.2%
total	610	47,618	2,805	+359.8%	93,218	+95.8%	2,944	+382.6%	104,133	+118.7%

Both MOPT-AFL-tmp and –ever found more unique crashes and paths than AFL.

Evaluation: Vulnerability discovery

Program		AFI	George - The St		1	MOPT-AI	FL-tmp	MOPT-AFL-ever				
	Unknown vulnerabilities		Known vul- nerabilities	Sum	Unknown vulnerabilities		Known vul- nerabilities	Sun	Unknown vulnerabilities		Known vul- nerabilities	Sum
	Not CVE	CVE	CVE	1	Not CVE	CVE	CVE	1	Not CVE	CVE	CVE	1
mp42aac	1	1	1	2	1 1	2	1	3	1 1 1	5	1	6
esiv2	1	5	3	8	1	5	4	9	1	4	4	8
mp3gain	1	4	2	6	1	9	3	12	1	5	2	7
pdtimages	1	1	0	1	1	12	3	15	1.	9	2	11
avdoev	1	0	0	0	1	2	0	2	1	1	0	- 1
w3m	1	0	0	0	1	14	0	14	1	5	0	5
objdump	1	0	0	0	1	1	2	3	1	0	2	2
jhead	1	1	0	1	1	4	0	4	1	5	0	5
mpg321	1	0	1		1	0	1 (1	0	1 (
infotocap	1	3	0	22	1	3	0	00	1	3	0	05
podefopdfinfo	1	5	0	33	1	6	0	ðð	1	6	0	Č (
tiff2bw	1	1	1		2	/	1	~	2	1	1	
sam2p	5	1	1	3	14	1	7	14	28	1	1	28
Total	6	20	7	33	16	58	14	88	30	43	12	85

Vulnerabilities discovered by AFL, MOPT-AFL-tmp, MOPT-AFL-ever

Both MOPT-AFL-tmp and –ever found much more vulnerabilities than AFL.

CVE discovery

Tarpri	Types.	AR.	MCPT-APL-snp	-	MOPT-APL-rever	Severity
	buffer overflow	CVE-2018-50785	CVE-2016-10785. CVE-2018-18017	COL	HE-ROOM CVE 2018-18077, CVE 2018-17014	43
прилак -	manoory items	CVE-2016-17815	CVE-2014-17813	CVE	HALTHER CVE-2014-18/SE CVE-2014-18/ST	- 4.1
	heap overflow	CVE-2017-1039; CVE-2017-10723; CVE-2018-10056	CVE-2017-(1339; CVE-2017-17723; CVE-2018-10780	CVE-	117-11339; CVE-2017-17723; CVE-2018-18838	5.8
	wark-merilew	CYE-2917-14661	CVF.2017-14861		CVE.2017.14861	43
101	builler creeffen	CVE-2018-18647	CVE-3016-03606, CVE-3018-08447		CAE 2018-180%	43
	segmentation violation	CVE-2018-08046	CVE-2018-18046		CVE-S10-18040	-43
	violation	CVE-2018-17809; CVE-2018-17807	CVE-2018-17809, CVE-2018-17823		CVE-2017-11337; CVE-2018-17808	4.3
	mark haller overflow.	CVE-2017-14407	EVE 2017 14407, EVE 2018 (780), EVE 2018 1799	1.000	CVE-207-54407	43
epipes	plotal ballor overflow	CVE-2018-17806; CVE-2018-17802; CVE-2018-18045; CVE-2018-18043	CVE-2013-14406; CVE-2018-17806; CVE-2018-17803; CVE-2018-17802; CVE-2018-18645; CVE-2018-18645; CVE-2018-18644	CAR:	CVE-2018-08047, CVE-2018-08047 CVE-2018-08047, CVE-2018-08047	6.3
	segmentation violation	CYE-2017-11406	CVT-2017-14412		CVE2017-16012	4.8
	mentapy paramite		CV8-2018-07828			5.8
	hosp halles overflow		CVE 2018-8185, CVE 2018-18054			43
phinaps	stack overflow	CVT-2016-r7114	CVE-2014-16369, CVE-2014-17114, CVE-2014-17115, CVE-2014-1716, CVE-2014-17117; CVE-2014-17119, CVE-2014-17120; CVE-2014-17121; CVE-2014-17122; CVE-2014-18093; CVE-2014-18095	CVE-	HE HANN, CVE 2018-17115; CVE 2018-17116; HE 17119; CVE 2018-17121; CVE 2018-17122; CVE 2018-12019	6.1
	plobal ballor overflow		CVEDREARD	-	CVE-2004-0102	43
	affec dealloc mismatch		CVE-2818-2111		CVE-2018-17118	4.3
	segmentation violation				CVE2RED/D3.CVE2RED/D34	43
	segmentation violation		CVE-2818-07804		CVE-2018-17804	43
Active -	mentory leafs		CVE-2016-07988			- 43
# 2m	segmentation violation.		CVE-2018-17015; CVE-2018-17016; CVE-2018-17017; CVE-2018-17018; CVE-2018-17019; CVE-2018-17021; CVE-2018-17022; CVE-2018-18079; CVE-2018-18079; CVE-2018-18060; CVE-2018-18061; CVE-2018-18079; CVE-2018-18079; CVE-2018-18061; CVE-2018-18062; CVE-2018-18079; CVE-2018-18061; CVE-2018-18062;	CVE-3	018-17818, CVE-2018-18040, CVE-2018-18041, CVE-2018-28042	5.3
	memory leaks		CVE-2018-01820	-	CVE-268-0100	43
	stack exhaustion		CvE-2016-12700		CVE-2016-12641	5.0
tolonum -	stack overflow		CVE-3018-8338 CVE-3018-16617		CVE-308-9138	43
Jeal	heap ballier overflow	CVE-2018-17810	CVE-2016-17610; CVE-2016-17611; CVE-2016-18648; CVE-2016-18649	CVE-	CVE-2018-1868, CVE-2018-0840 CVE-2018-1868, CVE-2018-0840	4.5
augu 721	hop baller coeffice .	CST-2017-12063	CVT-207512963		CVE-2017-02063	43
and the second	menney leaks	CVE-2018-16614	CVE-3918-10614		CVE-2018-10614	43
maxie -	segmentation violation	CVE-2016 16615, CVE-2018 16616	CVE-2018-16615, CVE-2016-16636		CVE-2018-36615, CVE-2018-56618	-43
web the first	stack overflow	CVE-2018-18216; CVE-2018-18221; CVE-2018-18222	CVE-2016-10214; CVE-2016-10217; CVE-2016-10221; CVE-2016-10222	CVE:	X88-18[16; CVE-2018-18[17; CVE-2018-18[18; CVE-2018-18[27]	. 47
bowe design-	hep haller overflow	CAE-2016-18518	Cvt:3/16/18219		CVE-2014-38219	43
	segmentation violation	CAE-2018-18520	CAP 2018 10520		CAE-2019-28520	4.5

Both MOPT-AFL-tmp and -ever found more CVEs with a variety of types than AFL.

Improvement 4: Seed Generation

FANS: Fuzzing Android Native System Services via Automated Interface Analysis

Baozheng Liu^{1,2}, <u>Chao Zhang</u>^{1,2}, Guang Gong³, Yishun Zeng^{1,2}, Haifeng Ruan⁴, Jianwei Zhuge^{1,2}

Android Application-Service Communication

- Android native system services provide fundamental functionalities, thus attractive to attackers
- □ A specific binder IPC mechanism is implemented to support native services
- Locate service interface (IBinder obj), launch transactions (transact method) with serialized data

Fuzzing Android Native Services

- Locate service interface (IBinder proxy obj)
 - some interfaces are deeply nested (not registered in Service Manager)
- Iaunch transactions (transact method), with
 - many transactions are available, and
 - some are inter-dependent
- serialized data
 - data type
 - data dependency

Simple random fuzzing is inefficient.

Our Solution: FANS

Recognize testcase formatGenerate valid testcases

C1. Multi-Level Interface Recognition

Collect all Interfaces

Identify multi-level interfaces

C2. Interface Model Extraction

Collect all of the possible transactions

Extract the input and output variables in the transactions

C3. Semantically-correct Input Generation

Variable name and variable type
Variable dependency
Interface dependency

http://netsec.ccert.edu.cn/chaoz/

Interface Collector

- Compile source code (including AIDL files)
- Recognize candidate service interfaces (with onTransact dispatcher)

Interface Model Extractor

- Transactions supported by the interface: switch conditions in onTransact
- I/O variables (data) used in the interface: readInt32, writeInt32 (name, type, size)
- Other information: aggerated type definition (e.g., structure)

Binder::onTransact(code, data, reply, flags)

Dependency Analysis

- Interface dependency: writeStrongBinder and readStrongBinder
- intra-transaction value dependency (conditional statement)
- inter-transaction value dependency (input/output variables with matching type and name)

□43 top-level interfaces

25 multi-level interfaces

□Most interfaces are written manually

Q1 - Interface Dependency

Interface generation

 e.g., IMemory

 Deepest interface

 IMemoryHeap (five-level)

 Customized interface

 e.g., IEffectClient

Q2 - Extracted Interface Model Statistics

530 transactions in top-level interfaces
 281 transactions in multi-level interfaces
 Variable

Most variables are under constraint(s)

http://netsec.ccert.edu.cn/chaoz/

We intermittently ran FANS for around 30 days

□ FANS triggered thousands of crashes

30 vulnerabilities in native programs

Google has confirmed 20 vulnerabilities

- **138** Java exceptions
- Comparison with BinderCracker

BinderCracker found 89 vulnerabilities on Android 5.1 and Android 6.0
 FANS discovered 168 vulnerabilities on android-9.0.0_r46

Source: <u>https://github.com/vul337/fans</u>

Vul Dist (ICSE20)

Improvements to Fuzzing

2020/8/22

Seed Generation

How to get/generate seeds?

Skyfire (Oakland17):learn a probabilistic CFG grammarLearn&Fuzz (ASE17):learn a RNN model of valid inputsGAN (2017/11)learn a GAN to generate legitimate seedsNeuzz (Oakland19):hlparmt@CNN.eto.model input→coverage

Seed Generation (2)

How to get/generate seeds?

Driller (NDSS16): hybrid fuzzing (symbex) schedule hybrid fuzzing DigFuzz (NDSS19) QSYM (CC18) efficient symbex or binary HFL (NDSS20) hybrid fuzzing for kernel Intriguer (CCS19) field-level symbex SAVIOR (Oakland20) symbex Matryoshka (CCS19) symbex for nested branches http://netsec.ccert.edu.cn/chaoz/

Seed Generation (3)

How to get/generate seeds?

DIFUZE (CCS17):static analysis, input format of ioctrl()FANS (USENIX Sec20):static analysis, interface of AndroidIMF (CCS17):dynamic analysis, dependency of macOSMoonshine (Sec18):static analysis, dependency of Linux
http://netsec.ccert.edu.cn/chaoz/

NAUTILUS (NDSS19): Context-Free Grammar by usersCodeAlchemist (NDSS19)JavaScript semanticsGrimoire (Sec19)Learn grammar during fuzzing

2020/8/22

Testing Environments

How to test targets?

T-Fuzz (Oakland18):bottleneck in binaryDachshund (NDSS17):JIT constant opt.Kelinci (CC17)Java applicationsDELTA (NDSS17):SDN applicationsTLS-Attacker (CCS17)TLSIoTFuzzer (NDSS18):IoT devices.EFuzz (CCS17)httpattsgridt.edu.cn/chaoz/FirmAFL (Sec19):IoT firmware effic.

Testing Environments (2)

How to test targets?

LipFuzzer (NDSS19): voice assistant PeriScope (NDSS19): driver (hardware). HyperCube (NDSS20): hypervisor RVFUZZER (Sec19): **Robotic Vehicles** kAFL (USENIX Sec17): kernel & PT JANUS (Sec19): File System Charm (USENIX Sec18): http://www.ice.dnixer SQUIRREL (CCS20): Database 93

2020/8/22

Seed Selection

How to select seed from the pool?

AFLfast (CCS16),cold paths/seedsQTEP(FSE17),more vul candidatesVUzzer (NDSS17),deeper pathsSlowFuzz (CCS17)more comp. resourcesAFLgo(CCS17),closer pathsFairFuzz (ASE18)rare branchesEcoFuzz (Sec17),closer paths.ccert.edu.crCollAFL (Oakland18)more unvisited children94

2020/8/22

Seed Mutation

How to generate/mutate new testcases?

LSTM (Microsoft, 2017/11) predicate which bytes to mutate first

Reinforcement Learning (2018/1) predicate which mutation op. is better

Mopt (USENIX Sec 2019)

select the best mutation algorithm using Particle Swarm Optimization

ILF (CCS19)

learn an AI model from symbex to produce fuzzing policy http://netsec.ccert.edu.cn/chaoz/

2020/8/22

Seed Mutation (2)

How to generate/mutate new testcases?

VUzzer (NDSS17) REDQUEEN (NDSS19)

Angora(Oakland18)

ProFuzzer (Oakland19)

GreyOne (USENIX SEC20)

taint analysis: which bytes/how to mutate

identify direct copy of inputs

gradient descent

recognize input shape by monitoring input-cov casuality

http://ndightweight ta/nhoan/alysis, branch conformance

2020/8/22

Efficient Testing

How to efficiently test target application?

perf-fuzz (CCS17) PAFL (FSE18) Untracer (Oakland19) EnFuzz (USENIX SEC19) FuzzGuard (USENIX SEC20)

enable efficient parallel fuzzing each fuzzer node focuses on partial code (bitmap) remove cov tracking after a while combine multiple strategies with parallel fuzzing http://netenovect.in/puts/that/cannot reach targets via AI

Coverage Metrics

A better/alternative coverage algorithm?

CollAFL (Oakland18) IJON (Oakland20) AFLgo (CCS17) HawkEye (CCS18)

mitigate coverage collision issue customize coverage metrics, e.g., position in the maze directed fuzzing targeting specific code

refined directed fuzzing http://netsec.ccert.edu.cn/chaoz/

Security Tracking

How to catch security violations during testing?

AddressSanitizer (ATC12):detect spatial and temporal mem violationMeds (NDSS18)fix minor defects of AddressSanitizerRazar (S&P19)race condition bugs

http://netsec.ccert.edu.cn/chaoz/

□ Fuzzing is the most popular vulnerability discovery solution.

Genetic-algorithm-based fuzzers achieve great success, and

Many improvements have been proposed and deployed in practice
 Including our works

Many more topics to explore in fuzzing

Join us

highly motivated students
 undergraduate intern students
 visiting master/phd students

Research assistants, engineers

BLUE-LOTUS

postdocs

tenure-track faculty

http://netsec.ccert.edu.cn/contact/

Thanks!

Q&A

